Antigen presented by tumors in vivo determines the nature of CD8+ T-cell cytotoxicity.
نویسندگان
چکیده
The biological relevance of the perforin and Fas ligand (FasL) cytolytic pathways of CD8(+) T lymphocytes (CTL) for cancer immunotherapy is controversial. We investigated the importance of these pathways in a murine renal cell carcinoma expressing influenza viral hemagglutinin as a defined surrogate antigen (Renca-HA). Following Renca-HA injection, all FasL-dysfunctional FasL(gld/gld) mice (n = 54) died from Renca-HA tumors by day 62. By contrast, perforin(-/-) (51%; n = 45) and Fas(lpr/lpr) (55%; n = 51) mice remained tumor-free at day 360. Blocking FasL in vivo inhibited tumor rejection in these mice. Moreover, established Renca-HA tumors were cleared more efficiently by adoptively transferred HA(518-526)-specific T-cell receptor-transgenic CTL using FasL rather than perforin. Strikingly, a range of mouse tumor cells presenting low concentrations of immunogenic peptide were all preferentially lysed by the FasL but not the Pfp-mediated effector pathway of CTL, whereas at higher peptide concentrations, the preference in effector pathway usage by CTL was lost. Interestingly, a number of human renal cancer lines were also susceptible to FasL-mediated cytotoxicity. Therefore, the FasL cytolytic pathway may be particularly important for eradicating Fas-sensitive tumors presenting low levels of MHC class I-associated antigens following adoptive T-cell therapy.
منابع مشابه
CD8+ T cell concentration determines their efficiency in killing cognate antigen–expressing syngeneic mammalian cells in vitro and in mouse tissues
We describe a quantitative model for assessing the cytolytic activity of antigen-specific CD8+ T cells in vitro and in vivo in which the concentration of antigen-specific CD8+ T cells determines the efficiency with which these cells kill cognate antigen-expressing melanoma cells in packed cell pellets, in three-dimensional collagen-fibrin gels in vitro, and in established melanomas in vivo. In ...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملDIFFERENTIAL EXPRESSION OF SURFACE MARKERS CD45RB AND CD44 ON MURINE CD8+ CELLS
Considering the emerging importance of phenotypic markers as indicators of cell function and differentiation, we studied patterns ofCD44 and CD45RB expression in CD8+ murine T cells with prior exposure to antigen or staphylococcal enterotoxin B ( SEB ). Following in vivo priming with two purified protein derivatives (one from a virulent WHO strain and the other from an avirulent strain), T ...
متن کاملEx vivo culture with interleukin (IL)-12 improves CD8(+) T-cell adoptive immunotherapy for murine leukemia independent of IL-18 or IFN-gamma but requires perforin.
In animal models and clinical trials, adoptive transfer of activated, antigen-specific CD8(+) T cells mediates tumor regression in a cell dose-dependent manner. The cytokine interleukin (IL)-12 promotes CD8(+) T-cell cytotoxicity and, with IL-18, synergistically up-regulates IFN-gamma release. We have shown that culturing CD8(+) T cells ex vivo with IL-12 and IL-18 enhanced antitumor responses ...
متن کاملLiposome and polymer-based nanomaterials for vaccine applications
Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 69 16 شماره
صفحات -
تاریخ انتشار 2009